友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
热门书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

prior analytics-第3章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!






(this has already been stated) it is clear that this arrangement of



terms will not afford a syllogism: otherwise one would have been



possible with a universal negative minor premiss。 A similar proof



may also be given if the universal premiss is negative。



  Nor can there in any way be a syllogism if both the relations of



subject and predicate are particular; either positively or negatively;



or the one negative and the other affirmative; or one indefinite and



the other definite; or both indefinite。 Terms common to all the



above are animal; white; horse: animal; white; stone。



  It is clear then from what has been said that if there is a



syllogism in this figure with a particular conclusion; the terms



must be related as we have stated: if they are related otherwise; no



syllogism is possible anyhow。 It is evident also that all the



syllogisms in this figure are perfect (for they are all completed by



means of the premisses originally taken) and that all conclusions



are proved by this figure; viz。 universal and particular;



affirmative and negative。 Such a figure I call the first。







                                 5







  Whenever the same thing belongs to all of one subject; and to none



of another; or to all of each subject or to none of either; I call



such a figure the second; by middle term in it I mean that which is



predicated of both subjects; by extremes the terms of which this is



said; by major extreme that which lies near the middle; by minor



that which is further away from the middle。 The middle term stands



outside the extremes; and is first in position。 A syllogism cannot



be perfect anyhow in this figure; but it may be valid whether the



terms are related universally or not。



  If then the terms are related universally a syllogism will be



possible; whenever the middle belongs to all of one subject and to



none of another (it does not matter which has the negative



relation); but in no other way。 Let M be predicated of no N; but of



all O。 Since; then; the negative relation is convertible; N will



belong to no M: but M was assumed to belong to all O: consequently N



will belong to no O。 This has already been proved。 Again if M



belongs to all N; but to no O; then N will belong to no O。 For if M



belongs to no O; O belongs to no M: but M (as was said) belongs to all



N: O then will belong to no N: for the first figure has again been



formed。 But since the negative relation is convertible; N will



belong to no O。 Thus it will be the same syllogism that proves both



conclusions。



  It is possible to prove these results also by reductio ad



impossibile。



  It is clear then that a syllogism is formed when the terms are so



related; but not a perfect syllogism; for necessity is not perfectly



established merely from the original premisses; others also are



needed。



  But if M is predicated of every N and O; there cannot be a



syllogism。 Terms to illustrate a positive relation between the



extremes are substance; animal; man; a negative relation; substance;





animal; number…substance being the middle term。



  Nor is a syllogism possible when M is predicated neither of any N



nor of any O。 Terms to illustrate a positive relation are line;



animal; man: a negative relation; line; animal; stone。



  It is clear then that if a syllogism is formed when the terms are



universally related; the terms must be related as we stated at the



outset: for if they are otherwise related no necessary consequence



follows。



  If the middle term is related universally to one of the extremes;



a particular negative syllogism must result whenever the middle term



is related universally to the major whether positively or



negatively; and particularly to the minor and in a manner opposite



to that of the universal statement: by 'an opposite manner' I mean; if



the universal statement is negative; the particular is affirmative: if



the universal is affirmative; the particular is negative。 For if M



belongs to no N; but to some O; it is necessary that N does not belong



to some O。 For since the negative statement is convertible; N will



belong to no M: but M was admitted to belong to some O: therefore N



will not belong to some O: for the result is reached by means of the



first figure。 Again if M belongs to all N; but not to some O; it is



necessary that N does not belong to some O: for if N belongs to all O;



and M is predicated also of all N; M must belong to all O: but we



assumed that M does not belong to some O。 And if M belongs to all N



but not to all O; we shall conclude that N does not belong to all O:



the proof is the same as the above。 But if M is predicated of all O;



but not of all N; there will be no syllogism。 Take the terms animal;



substance; raven; animal; white; raven。 Nor will there be a conclusion



when M is predicated of no O; but of some N。 Terms to illustrate a



positive relation between the extremes are animal; substance; unit:



a negative relation; animal; substance; science。



  If then the universal statement is opposed to the particular; we



have stated when a syllogism will be possible and when not: but if the



premisses are similar in form; I mean both negative or both



affirmative; a syllogism will not be possible anyhow。 First let them



be negative; and let the major premiss be universal; e。g。 let M belong



to no N; and not to some O。 It is possible then for N to belong either



to all O or to no O。 Terms to illustrate the negative relation are



black; snow; animal。 But it is not possible to find terms of which the



extremes are related positively and universally; if M belongs to



some O; and does not belong to some O。 For if N belonged to all O; but



M to no N; then M would belong to no O: but we assumed that it belongs



to some O。 In this way then it is not admissible to take terms: our



point must be proved from the indefinite nature of the particular



statement。 For since it is true that M does not belong to some O; even



if it belongs to no O; and since if it belongs to no O a syllogism



is (as we have seen) not possible; clearly it will not be possible now



either。



  Again let the premisses be affirmative; and let the major premiss as



before be universal; e。g。 let M belong to all N and to some O。 It is



possible then for N to belong to all O or to no O。 Terms to illustrate



the negative relation are white; swan; stone。 But it is not possible



to take terms to illustrate the universal affirmative relation; for



the reason already stated: the point must be proved from the



indefinite nature of the particular statement。 But if the minor



premiss is universal; and M belongs to
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!