友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
热门书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

中国涡扇发动机最权威爆料-第6章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



备軨J2000核心机放大或缩小就可以发展出不同推力量级的高性能发动机来。我相信,在不久的将来,我们将会看到装配推比10发动机的新型国产飞机翱翔在祖国的蓝天。 




七、材料上的突破 




材料是工业的基础,发动机也不例外。而且发动机对材料的要求更苛刻。以下简单介绍一下两种正在应用的先进材料 




高温合金是铁基、镍基和钴基高温合金的总称,又称超合金。铁基合金使用温度一般比镍基合金低,可做中温使用的零部件,如700℃以下使用的涡轮盘。镍基合金用来制造受力苛刻的热端部件,如涡轮叶片、导向叶片、燃烧室等,在先进的发动机中,镍基合金占总重量的一半。钴基合金因其具有良好的抗热腐蚀性能和抗冷热疲劳性能广泛用作导向叶片。国外铸造合金随定向凝固、单晶、超纯熔炼技术的发展,从定向正发展至单晶。单晶合金也已先后研制出三代产品。单晶合金是提高涡轮前温度、高推比的必须。国外现役发动机叶片材料主要采用第二代和第三代单晶合金,目前发展低成本(少Re)三代单晶合金,发展多孔单晶发散叶片。开发出第四代单晶。 我国先后发展了2代单晶合金,即DD3和DD6。DD3已经开始用于涡轴发动机,DD6可能在太行发动机生产型上得到应用。 




涡轮盘是发动机重要的热端部件之一。它在极为苛刻的条件下工作,飞行时承受着启动…停车循环中的机械应力和温差引起的热应力的迭加作用,因而要求材料具有足够的力学性能和理化性能,特别是在使用温度范围内要有尽可能高的低周循环疲劳和热疲劳性能,这是确定涡轮盘工作寿命的关键因素。 

' 转自铁血社区 bbs。tiexue/ '



在粉末盘之前,盘件用的γˊ相沉淀强化型合金由于强化元素不断地增多,严重的偏析使热加工性能恶化,低周疲劳性能降低,裂纹容易扩展,且投料比达19:1以上。投料比高和锻造工艺复杂,使其成本大为提高。60年代末期,随着高纯预合金粉末制造技术的兴起,美国 PW公司首先将当时的盘件合金ASTROLOY制成了粉末盘。粉末盘的出现,解决了涡轮盘合金高合金化造成的凝固偏析和变形困难,提高了力学性能,而且性能波动小。在目前的涡轮盘制造技术中,粉末冶金已成为制造高性能涡轮盘最成熟可靠的方法,粉末盘已广泛用于美俄等国多种先进发动机的研制和生产中。 




粉末(镍基)高温合金晶粒细小,组织均匀,无宏观偏析,合金化成度高,屈服强度高,疲劳性能好,是制造高推比新型发动机涡轮盘等部件的最佳材料。目前在粉末高温合金领域,美国和俄罗斯工艺各异,都居于世界领先地位 




用于高推重比发动机涡轮盘的粉末合金第一代有In100、Rene95、APK…1、ЗП74НП合金等。GE用HIP,HIP+热模锻,HIP+HIF(等温锻)和EX(挤压)+HIF的Rene95粉末盘,轴等高温部件。俄罗斯研制的ЭП741HП合金用量最大,1550MPa以上 ,750℃,100h的持久应力达750Mpa。主导制造工艺路用温度达700℃的ЭП962П高强合金与Rene95类似。使用母合金熔炼及电极棒浇注加工→ 等离子旋转电极制粉→ 粉末处理→ 粉末装套及封焊→ 热等静压成形→ 热处理→ 机加工→ 检验→ 成品。 推重比10发动机涡轮盘用的二代粉末合金有Rene88DT、N18、MERL…76、ЗП975合金。盘件合金实现了由高强型向耐损伤型的转变,强度稍有降低,但疲劳裂纹扩展速率下降较多,工艺性能得到改善,设计的使用温度达到750℃或更高。采用铸造及激光打孔工艺直按制造发散冷却孔道。 第三代粉末盘发展有双组分(AF115+MER…76)、双重热处理组合盘。该粉末盘是推比12~15的发动机所用的关键技术 




中国650℃第一代高温合金粉冶FGH95在77年进行研制,从德国Heraeus公司引进了部分研究设备仿制Rene95合金。84年底模锻出Φ420mm的全尺寸涡轮盘,基本达到Rene95性能。展开母合金熔炼,氩气雾化制粉,粉末处理,热等静压成形,等温锻,热处理,超声检验及表面强化等研究,发现工业生产等工艺问题严重。从俄国引进工业化生产的等离子旋转电极制粉设备及盘件生产线,95年底全部投产,从根本上解决了粉冶高温合金的粉末质量问题。95年西南铝加工厂用包套锻造工艺成功地模锻出10A盘用的φ630mm的粉冶FGH95 合金涡轮盘,经过潜心研究度过了淬火关,得到快速冷却而不裂的涡轮盘。但是发现问题,以后倾向于采用HIP+等温锻(或热模锻)工艺路线。FGH95合金使用温度为650℃,拉伸强度可以达到1500Mpa。在650℃、1035MPa应力条件下,持久寿命大于50小时。现已由红原采用一万吨油压机等温锻出太行发动机需要的全尺寸FGH95粉末冶金涡轮盘。 




另外我们也在搞第二代粉末冶金FGH96、FGH97合金,可在750℃下使用。2004年红原试制出推比10发动机用的全尺寸FGH96粉末冶金涡轮盘。目前北京科技大学高温材料及应用研究室正在根据高推重比研究计划和设计部门要求,填补国内先进涡轮盘材料空白,为高推重比航空发动机材料储备关键技术,进行“十五”攻关项目高推重比发动机用粉末高温合金第三代双性能涡轮盘研究,750…850℃难变形高性能高温合金盘材的研制。863“高熔点结构材料快速凝固喷射成形制备技术”子课题,研究喷射成形高温结构材料的特殊微观结构及其与高温蠕变和疲劳性能的关系,为应用建立基础。 




除了以上材料外,正在应用的还有金属间化物高温材料,锆陶瓷涂层,陶瓷基材料,钛合金材料,复合材料,变形高温合金材料,本文就不一一赘述了。 

' 转自铁血社区 bbs。tiexue/ '



八、盛开在太行山上 




2006年2月24日,中国航空报头版刊登了我国首台有自主知识产权大推力军用加力涡扇发动机太行发动机定型的消息,消息传来,大家都欢呼雀跃,欢欣鼓舞。 




但太行究竟是怎样的发动机,他的由来是怎样的呢? 




80年代初期,我们搞到一批CFM56…3,这种发动机的核心机就是F101的核心机,而F101的核心机的衍生就是F110的核心机。F110是一种十分优秀的发动机。它的生产商是通用电气公司,简称GE。80年代初期,GE公司通过以先进发动机核心机为基础,不断吸取各种预先研究计划和部件改进计划中获得的成熟技术以及直接移植使用中的发动机技术,研制出性能高、可靠性好、寿命长、使用维护成本低、研制风险小的F110系列发动机。 




F110是以F101的核心机和F404的风扇与喷管等技术为基础研制的一种推重比7的涡扇发动机,1986年装F…16C/D服役。之后,在F110…GE…100的基础上改进发展了F110…GE…129IPE(改进性能发动机),推力达129千牛,推重比为7。28,1991年装F…16C/D和F…15A/C服役。在F110…GE…129IPE装备部队后,又以该发动机的技术为基础,采用综合高性能涡轮发动机技术(IHPTET)计划等预先研究计划和部件改进计划(CIP)的成果,研制F110…GE…129EFE发动机。1991年10月,其验证机F110X的海平面试验推力达到162千牛,推重比接近9。5。转入工程研制阶段后,历经10年提高性能、可靠性、耐久性和减轻重量等方面的大量试验研究,取得了巨大进展,并以最大推力为151。4千牛通过定型审定,2002年投产。 




按美空军的建议,将推力142千牛的F110…GE…129EFE命名为F110…GE…132;将推力为151。4千牛的命名为F110…GE…134。 F110…GE…100的风扇是按F404的风扇比例放大的,由2级改为3级,压比由2。0提高到3。2,涵道比由2。01减到0。87,直径减小到0。97米。高压压气机、燃烧室和高压涡轮与F101的相同。低压涡轮以F101的为基础重新设计,仍保持2级,但为适应新风扇的需要,提高了转速。加力燃烧室是F101的缩小型。排气喷管由F404的改进而来。轴承除5支点外,其余与F101的相同。GE公司对核心机以外的部件和系统进行了比例缩小和减轻重量的处理。 F110…GE…129IPE继承了F110…GE…100型81%的零、组件,少量部件做了改进。采用新材料,使涡轮进口温度提高55℃~80℃;采用改进性能的全权限数字式电子控制器,代替模拟式电子控制器和液压机械式控制器;涵道比由0。87降为0。76。 

' 转自铁血社区 bbs。tiexue/ '



F110…GE…129EFE(增强型战斗机发动机)的风扇是采用F118和IHPTET的风扇研究成果设计的一种3级整体叶盘结构的风扇。由于运用三元流技术进行设计,风扇效率显著提高,空气流量增加7%,压比由3。4提高到4。2;采用整体叶盘,消除了燕尾槽和阻尼凸台等处的应力集中,简化了结构,减少了零件数,减轻了重量,减少了泄漏;第1级采用宽弦叶片,用激光冲击强化技术,进一步提高抗外来物损伤能力,这些都提高了可靠性和可维护性。 加力燃烧室从F120和F414加力方案衍生而来,以径向火焰稳定器取代三圈环形稳定器,使结构更简单,零件数减少15%,重量减轻3%,维修性和可靠性得到改善;由于采用三维计算流体力学进行设计,使效率更高、点火特性更好。尾喷管在继承F110…GE…129IPE高可靠性的基础上,其外套的隔热防震衬直接将气膜冷却空气引至后端的调节片和密封片中,使寿命、可靠性和维修性都有明显改善;结构上稍做改进,使其具有装引射喷管或三维矢量喷管的能力。燃油系统采用全权限双通道数字式电子控制器(FADEC),实现连续调节尾喷管的喉道面积,提高了发动机推力和风扇的喘振裕度,减少了尾喷管的阻力,改善了在整个飞行包线内发动机的可操
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!