友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
热门书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

伊利亚.普利高津确定性的终结-第12章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



比制备能够导致其中的关联被破坏的系综,所需程序要短。 
  但是,为什么要从概率分布入手?概率分布描述轨道丛或系综的性态。我们采用系综到底是因为我们“无知”,还是像第一章讨论的那样隐含有更深刻的原因?对于不稳定系统,系综与个体轨道相比确实显示出新的特性。这就是我们现在将用若干简单例子加以说明的东西。 
II  
  在本小节里,我们将关注确定性混沌,以及一种特别简单类型的混沌二者都对应于混沌映射。与在普通动力学中发生的情况相反,映射中的时间仅以离散间隔起作用,比如在第I节中我们讨论过的埃伦费斯特瓮模型。因此,映射表示动力学的简化形式,它使我们比较容易把个体描述层次(轨道)与统计描述进行比较。我们将考察两种映射。第一个例子描绘简单周期性态;第二个例子描绘确定性混沌。  在第一个例子里,我们考虑“运动工程”xn+1=xn+ 1/2(mod l)。mod 1的意思是,我们只处理0和1之间的数。经过两次推移后,我们回到初始点(即x0=1/4,x1=3/4;x2=3/4+2/4=5/4=1/4)。这种情况如图3。5所示。       
  不考虑由轨道定位的单个的点,而考虑由概率分布ρ(x)描述的系综,是很有意义的。轨道对应于系综的特殊集合,其中,坐标X取明确定义的值Xn,分布函数ρ则退化成单个点。第一章第III节曾提到,这可以写为ρn(x)=δ(x…xn)。(δ函数是除了x=xn外其余所有值皆为零的一种函数的符号。)用分布函数ρ,映射可以表达成ρn+1(x)与ρn(x)之间的关系。故我们可以写成ρn+1(x)=Uρn(x)。形式上,ρn+1通过作用于ρn(x)上的算符U而得到。这个算符称为佩龙一弗罗贝尼乌斯算符。在这一点上,它的显式对我们并不重要,但值得注意的是,并没有在U的结构中引人新的元素(运动方程除外)。显然,系综描述必须把轨道描述作为一种特例,因而我们有δ( x-xn+1)=Uδ(x…xn)。这只不过是将运动方程重写的一种方法,因为,推移一次后,Xn就变成了Xn+1。然而,主要问题在于:这是唯一的解,还是作为由不能用轨道表达的佩龙…弗罗贝尼乌斯算符所描述的系综演化的新解?在我们周期映射的例子中,回答是否定的。对于稳定系统,个体轨道与系综的性态之间没有任何差别。对于不稳定动力学系统,正是个体观点(对应于轨道或波函数)与统计观点(对应于系综)之间的这一等价性被打破了。       
  混沌映射最简单的例子是伯努利映射。这里,我们把0和1间的数值每一步都乘以2,得到运动方程:xn+1=2xn (mod 1)。这个映射如图3.6所示。运动方程再次成为确定性的,一旦我们已知xn,则xn+1的数值也就确定了。这里我们有一个确定性混沌的例子,之所以如此称呼,是因为如果我们用数值模拟来跟踪轨道,就会发现轨道是无常的。因为坐标x在每一步都乘以2,两条轨道之间的距离将为(2n)=exp(nln2),仍然是mod 1。用连续时间t,这可以写成exp(t λ),其中λ=ln2,λ称为李雅普诺夫指数。这表明,轨道指数地发散。这种发散就是确定性混沌的标志。若我们等待足够长的时间,则轨道最终将趋近0与1之间任意选择的任何点(参见图3.7)。这里,我们有一个导出随机性的动力学过程。过去,确定性宇宙中的这一表现流被许多大数学家反复研究过,诸如克罗内克(Leopold Kronecker(1884))和外尔(Hermann Weyl(1916))。按照普拉托(Jan von Plato)的说法,类似的结果早在中世纪就已得到,所以,这肯定不是一个新问题。然而新鲜之处在于,把随机性与算符理论联系起来的伯努利映射的统计表述。       
  我们现在转向用佩龙…弗罗贝尼乌斯算符的统计描述上来。在图3.8中,我们看到算符U对分布函数的影响。轨道描述的差异是显著的,因为分布函数ρ(x)很快变为常量。因此,我们断言,用轨道描述的一方与用系综描述的另一方之间的基本差异必然存在。总之,轨道层次上的不稳定性导致统计描述层次上的稳定性。       
  这如何可能呢?佩龙…弗罗贝尼乌斯算符仍允许轨道描述δ(x…xn+1)=Uδ(x…xn),但意料之外的特点是,它还允许只适用于统计系综而不适用于个体轨道的新解。个体观点与统计描述之间的等价性被打破了。 
  这件令人震惊的事实揭开了数学和理论物理学的新篇章。虽然混沌问题不能在个体轨道层次上加以解决,但它能在系综层次上得到解决。我们现在可以谈论混沌定律。我们将在第四章里看到,我们甚至可以预言分布ρ趋向平衡的速率(对于伯努利映射它是常量),并建立这一速率与李雅普诺夫指数之间的关系。 
  我们怎么理解个体描述与统计描述之间的差异呢?在第四章,我们将更详细地分析这一情况。我们将看到,这些新解需要分布函数光滑,这就是为什么此种新解不适用于个体轨道的原因。用δ(x…xn)表示的轨道不是光滑函数,因为它当且仅当x=xn时不为零,当x≠Xn时为零。 
  因此,用分布函数的描述比从个体轨道导出的描述更加丰富,这和我们在第一章第III节所得出的结论一致。对于不稳定映射,轨道仅是佩龙…弗罗贝尼乌斯方程的特解。这也适用于具有庞加莱共振的系统(参见第五、第六章)。就概率分布而言,有时间方向的关联流是这些新解中的要素,而无时间方向的过程存在于个体轨道层次。 
  我们方法根本性的妙招,是打破个体描述与统计描述之间的等价性。下一章我们将更详细地讨论在统计层次出现于混沌映射中的新解。 
  我们现在发现自己所处的情况令人联想起我们在热力学中遇到的情况(见第二章)。平衡热力学的异常成功,妨碍了其中出现耗散结构和自组织的非平衡情形中物质的新属性的发现。类似地,经典轨道理论和量子力学的成功,阻碍了动力学向统计层次的扩展,阻碍了把不可逆性结合到对自然的基本描述之中。        
《确定性的终结》 
伊利亚·普利高津著 湛敏译        
第四章 混沌定律        
I  
  在第三章,我们阐述了使我们能够对于不稳定动力学系统扩展经典力学和量子力学的要素:打破个体描述(用轨道)与统计描述(用系综)之间的等价性。现在,我们想就简单混沌映射更贴近地分析这种不等价性,并说明这一结果如何与数学的最新进展相关联。我们先回到伯努利映射。如前所述,这是确定性混沌的一个例子。 
  根据运动方程xn+1=2xn(mod 1),一旦我们已知初始条件x0,则对于任意的n,都能够计算xn。然而,一个随机性要素仍然呈现出来。在0和1之间的任意数x可以用二进制数字系统表示:x=u0/2+u…1/4+u…2/8…,其中ui=0或1(我们用负下标u…1、u…2来引入将在第III节中研究的面包师变换)。于是,每个数xn都用一系列数字来表示。不难证明,当它把数ui向左边移动时,伯努利映射导出推移un'=un…1(例如,u'…2= u…3)。数列 u…1,u…2,…中的每个数的值与其他数的值无关,所以每一逐次推移的结果像掷硬币一样是随机的。这个系统叫做“伯努利推移”,以纪念18世纪大数学家伯努利(Jakob Bernoulli)在机遇游戏中的开创性工作。在这里,我们还可以看到对初始条件的敏感性:仅有微小差别的两个数(比如说,u…40不同,即差异小于2…39),在40步后竞相差1/2。我们已解释过,这种敏感性对应于一个正李雅普诺夫指数,当x在每一步都加倍时,它的值为ln2(参见第三章第II节)。 
  伯努利映射从一开始就引入只指向一个方向的时间之矢。如果不考虑 xn+1=2xn(mod 1),而考虑映射xn+1=1/2 xn,我们会在x=0处发现一个单点吸引子。时间对称性在运动方程层次被打破,故运动方程不是可逆的。这和牛顿描述的动力学系统形成对照,因为牛顿运动方程对于时间反演是不变的。 
  在这一关头要牢记的最重要一点是,轨道不足胜任。轨道不能描述混沌系统的时间演化,即使混沌系统由确定性运动方程所支配。迪昂(Pierre-Maurice Duhem)早在1906年就指出,仅当我们对初始条件作少许改变时,轨道保持几乎相同,轨道概念才是一种适当的表示方式。用轨道描述混沌系统恰恰缺少这种稳健性。这正是对初始条件敏感性的含义:两条轨道从我们所能想象的尽可能靠近的两点出发,随着时间的推移,它们将按指数发散。 
  相反,在统计层次上描述混沌系统没有什么困难。因此,正是在统计层次上我们必须表述混沌定律。在第三章,我们引入了佩龙…菲罗贝尼乌斯算符U,它把概率分布ρ(x)变换成ρ n+1(x)。我们得出结论:存在着不适用于个体轨道的新解,本章中我们想要确认的正是这些新解。对佩龙…弗罗贝尼乌斯算符的研究是一个发展很快的领域,它在这里特别有意义,因为混沌映射或许是显示不可逆过程的最简单系统。 
  玻尔兹曼将他的思想应用到包含庞大数量分子(10 23 数量级)的气体,但在这里正好相反,我们只处理少量自变量(伯努利映射仅有一个自变量,我们将简要考察的面包师映射也只有两个自变量)。我们将不得不再次摈弃此种论点,即不可逆性只是因为我们的测量受限于近似而存在。我们先来确认与统计描述相联系的一类新解。 
II  
  我们如何在统计层次上求解动力学问题?首先我们必需确定分布函数ρ(x),以便能观察到复现关系 ρ n+1(x)=U ρ(x)。(n+1)次映射后,分布函数ρ n+1(x)由作用于 ρ n(x)上的算符U所得到,ρn(x)是n
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!