友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
热门书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

复杂性中的思维物质-第24章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



      4.2复杂系统和神经网络  
    19世纪,生理学家发现了诸如感觉、视觉和肌肉运动等等依赖于个体细胞的神经系统的宏观效应。这些细胞通过引发电流或对电流作出反应,从而能够接收和传送信号。显然,神经系统和大脑是自然界进化中的一种最为复杂的系统。人的大脑中至少有100亿个神经细胞(神经元)。每一个神经元都接受其他细胞的输入,并把输入整合起来,产生出某种输出,并将它送给其他的神经元。输入由特定的突触所接收,输出由特定的输出线所发送,这种输出线叫做轴突。 
    一个神经元自身就是一个复杂的电化学装置,其中包含有连续的内部膜电势。如果膜电势超过了一定的阈值,神经元就传送一个数字作用电势给另外的神经元。在细胞体中产生的神经脉冲,沿着一个或数个轴突传播。神经学家通常区分出激发突触和抑制突触,这使之有些类似于神经元的发放动作电势。围绕着突触的树突可以接收来自数个到数千个其他神经元发送来的信号。一个神经元的活性是用它的发放频率来度量的。生物神经元并非二元的,因为输出是连续的。不过,许多神经网络模型都进行了简化,运用二元计算单位。 
    大脑是这种细胞的复杂系统。虽然单个神经元没有视觉,不会推理,也不能记忆,但是大脑却可以具有这些能力。视觉、推理和记忆被理解为较高级的功能。倾向于自下而上策略的科学家提出,只有每一神经元和突触的特殊性质都得到探讨和解释以后,大脑的较高级的功能才能得到认识和理解。 
    复杂系统探究方式的一种重要洞见是揭示了,整体系统的突现效果不可能还原成单个元素的系统效果。从哲学上看,整体大于其部分之和。因此,对于大脑的纯粹的自下而上的探索策略是注定要失败的。另一方面,纯粹自上而下策略的拥护者主张认知完全独立于神经元系统,他们又置身于老笛卡尔的两难境地:“幽灵是如何驱动机器的?” 
    在精神哲学中传统的做法(参照4.1节)总是或多或少地倾向于其中的一种研究策略。在18世纪,莱布尼茨和后来的动物学家邦尼特已经指出,自然界中存在着组织发展程度不同的复杂性。在图4.3中,示意了神经系统中的组织水平。解剖学的组织等级包括不同的大小尺度,从分子尺度到整个中枢神经系统。    
    这种尺度考虑了分子、膜、突触、神经元、核、环路、网络、皮层、映射、系统和整个神经系统。在图的右边底部示意了化学突触,中间的网络模型示意了神经书细胞如何连接成一个简单的视皮层细胞,在上部示意视皮层的可视区的亚组织,左边是整个的中枢神经系统。 
    对这些等级水平的研究透视,可能涉及到这样一些问题,例如,信号是如何在树突中整合起来的,神经元是如何在网络中相互作用的,网络是如何在例如视觉系统中相互作用的,系统是如何在中枢神经系统中相互作用的,或者中枢神经系统是如何与其环境相互作用的。每一层都可以用决定其特定结构的序参量来标志,序参量是相应的特定等级层次的子系统的复杂的相互作用引起的。例如,从底部出发,我们可以区分出不同次序:离子运动、通道构型、动作电势、电势波、行进、感觉、行为、情感和推理。 
    十分显然的是,神经系统的一种重要功能是支配和控制机体在环境中的生活条件。例如,一个初级可控状态的例子是有机体的温度。在环境状态变化的最高水平上需要有预先计划和社会相互作用,这就导致了在复杂的文化进化中出现了人类的书面通信功能、创造艺术、解决数学问题等等。 
    从达尔文的观点来看,神经系统及其复杂性层次不断增加的进化,表现为受自然界的最基本目的——适者生存——所推动。一些脑科学家甚至强烈主张:诸如抽象思维这样的精神现象的形成,也仅仅是某种“副现象”,它并非是自然自身所倾向的。关于自然的意向性和目的性的信念,当然仅仅是人的一种隐喻,假定了某种世俗化的神性——称之为“自然”——在支配着进化。按照复杂系统探究方式,每一中枢神经系统水平都具有其自身的功能特征,是不可还原为较低层次的功能特征的。因此,从层次透视来看,抽象思维只能被看作某个层次例如体温控制系统的某种“副现象”。 
    为了给大脑及其复杂的能力建立模型,区别出如下的范畴是十分合适的。在神经元水平的模型中,研究集中在每一神经元的动力学性质和适应性质上,以把神经元描述为单元。在神经网络水平上,均一的神经元相互关联起来展示出突现的系统功能。在神经系统水平上的模型中,若干个网络结合起来展示出更复杂的感知功能、原动功能、稳定控制等等。在精神操作水平的模型中,描述的基本的过程是认知、思维和问题求解等等。它们的模拟与人工智能框架密切相关(参照第5章)。 
    从方法论的观点看,我们必须意识到,模型决不可能穷尽一切,也不可能是实在的同构映射。例如,在物理学中,单摆模型忽略了摩擦。在化学中,分子模型将轨道中的电子看作类似于太阳系中的行星,而不理睬海森伯不确定原理。然而,这些模型在一定应用条件下都是有用的。大脑模型的条件由大脑组织的水平给出。如果建立起一定水平上的大脑组织的功能模型,该模型就应该考虑到该水平之上和之下层次的条件。较高水平的性质常常是无关的。一般地,建立模型的方法论由计算方法的代价和收益来决定。一个试图在各个方面都是现实的人脑模型就需要过于高昂的分析和建构。它可能永远难以满足所希望的目的,因此是不实际的。科学家在致力于为大脑组织的一个个水平建立模型时,对有关的下一层次进行简化,就将更为成功。另一方面,模型必须是富有成果的,以能揭示大脑组织的根本性的复杂特征。 
    按照复杂系统探究方式,大脑功能的建模应该采用适当的描述大脑活动的动力学轨迹的态空间和相图。法国数学家和哲学家勒奈·笛卡尔已经在(欧几里得)几何框架中描述了感觉、手臂运动和大脑的合作(图4.1)。 
    今天,神经网络是用矢量空间和神经矩阵来进行几何描述的。神经元的电化学输入与输出之间有权重联结。在小脑的图式区(图4。4)中,神经矩阵的权重Wij允许网络通过矩阵相乘从输入矢量计算出输出矢量。    
    图4.4的例子涉及3×4的神经元矩阵。神经生理学建模要求巨大的灵活性,因为神经网络可能是相当复杂的。但是,联结矩阵可以有效地将高维态空间变换到其他的不同维数。在数学上,这些高维的变换可能引起几何问题,使用初等形式分析几何难以求解。在这种情况下,就需要广义的张量网络理论,以管理复杂的坐标。从历史上看,令人惊奇的是,从欧几里得几何转变到更一般的拓扑空间和度量空间,不仅仅可以在相对论中表述外部世界,同时还可以表述神经系统的内部特征。 
    用笛卡尔早期的方法,让我们涉及一种基本的感知原动坐标,它由矢量或张量变换来代表。动物如何抓住一个被它的感官所感知的对象(图4.5a)?在一个简化的模型中,两眼的位置最先在一个感知数据的二维空间进行编码。这个态空间可以形象表示为一个二维拓扑图。从感知态空间的某一点发出一个脉冲到相应的原动态空间的一个点,原动态空间也是由一个二维拓扑图来代表的。原动态空间的一个点为相应的手臂位置进行编码(图4.5b)。    
    眼前庭反射是另一个感知原动坐标的例子。生物藉此神经排列,通过与头部运动方向相反的眼球的短弛像运动,从而把影像稳定在视网膜上。在此神经系统中,涉及两种神经结构,它们可以由中枢神经系统固有的不同的坐标系来代表。首先,我们必须分析耳前庭器的半圆通道,每一边有3个通道,可由三维坐标系来代表。其次,每一个眼球都有6条外眼肌,这相应于六维坐标系。因此,眼前庭反射感知原动坐标,用几何方法由三维(共变)向量的张量变换来描述。这种数学框架可以用来计算任何的由一定前庭输入造成的眼肌激活。    
    在神经元和神经网络水平上,人工单元的网络用来模拟和考察大脑组织。这些单元被假定在0和1之间变化。每一单元接收来自其他单元的信号,其间通过突触以不同的权重联结起来。接受和发送表示是值的有序集合,输出单元是适当激活了的。数学上,这种程序可以解释为作为证据的某种输入对于作为功能值的输出的一个映射。功能规则是由权重的排列所决定的,它们依赖于神经网络的拓扑。 
    在大脑中,神经元常常构成了作为输入层的群体(图4.6)。这些细胞的轴突发送到第2层神经元。在这第2层细胞的轴突又可以投射到第3层细胞群体上,如此等等。在所有输入单元中的自发激活的集合体是作为矢量的输入刺激的网络表示。这种输入矢量及其活化层次向上面的中间层次传播。结果是一组活化层次,它们由输入层的输入矢量,以及从输入单元的分枝末端到中间层那些关联权重所决定。这种中间层的活化矢量向上传播到最高的单元层,在3层网络的情况下产生了一个输出矢量。这个输出矢量由中间层的活化矢量和处于中间单元到输出单元的分枝的终端的关联权重决定。 
    一个仅仅具有输入层和输出层的两层网络是一种简单的刺激…反应图式,具有可观测的、可测量的输入和输出。在3层网络的情况下,中间层的单元及其权重常常难以直接测量,而只是被假设为某种处于黑箱中的隐藏机制。因此,它们被称为隐含单元。    
    当然,真实的神经系统显示出多
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!